

## Introduction to VM – Strategy / M&A and Performance Management

## **SELECTED TOOLS**



VALUE MANAGEMENT

## The highest potential for optimization can be found in processes and leadership in five different areas of work

Performance Management – Key Areas



- Identification of the most innovative and sophisticated products
- Optimizing development cycles
- Embodiment of Product-Lifecycle with PLM
- Focusing on growth and growth strategy
- Increase efficiency of sales organization and CRM
- Multi-project management, network competence improvement
- Restructuring of the organization, direct / indirect areas
- Operational and organizational optimization
- Management Operating System & Performance Management
- Reduction of the costs of production, warranties and ex gratia payments
- Total costs of quality / Robust design (Time to quality) / Six Sigma
- Value Chain Excellence
- Suppliers: Selection, Evaluation, Development, Controlling
- Total costs of ownership, Supply Chain Management
- Cost (in- / outbound) and controlling of logistics, Inventory Management

VM VALUE MANAGEMENT

## The TOP 20 steel producers play a key role - Global footprint (production/sales) benchmarking needs to be evaluated

### 1. Product Market Strategy – Case Study

#### **Key Figures**



(Assumption: Information is given)

Source: "Top Steel-Producing Companies 2012 "-

World Steel Association, H&P Research (M&A are being considered)

## Therefore benchmarking needs to consider the differences in each Cl, region and product



### 1. Product Market Strategy – Case Study

#### **Client Industry**

- Automotive
- Truck
- Construction
- Energy
- Packaging
- Household



**Possible sales structuring** 

- Hot-rolled Strip
- Steel Sheet
- Organic Coating
- Tin-/Blackplate
- Medium-wide Strip
- Others/Services

#### Regions

- Europe
- North America
- Middle-/South
   America
- Middle East
- Rest of Asia
- Africa

#### **Explanations:**

- The sales structure can be different for each CI, region and product
- Steel manufacturer can be competitors e.g. in Asia for TK Steel, but not in Europe
- Reasons for this can be.:
  - Lack of local production site or sales-/ service department (no footprint)
  - Regional differences in client structure and therefore the requirements (fragmented vs. concentrated)
  - Limited access to markets (e.g. can only be penetrated with direct sales and not though agents and vice versa



#### SELECTED CASE STUDIES

## Looking at sources of market leadership cross-checked with EXAMPLE-CLIENT starting position – customer intimacy offers a path forward

1

2

3

- Ÿ)
- 1. Product Market Strategy Case Study
- 2 Case Study Sources of market leadership



- > Superior manufacturing and supply position
- > Allows lowest cost offer to commodity customes
- Innovative solutions and new materials meet customer needs
- > Allows strong differentiation and potentially premium margin

## EXAMPLECLIENT O&G OFFSHORE for Leadership

- > Players in the O&G offshore chain are very demanding and looking for trusted partners
- EXAMPLECLIENT managed to establish a trusted partner position for own product and particularly as a packaging partner
- Potential to leverage strong pipeline positions
- Except for the UK the cost is a real issue particularly also looking at the logistics cost to play in Asia and North America
- EXAMPLECLIENT is clearly behind the leaders in many products and specialized steel qualities
  - > At the moment it is not considered a preferred partner by the leading customers (IOCs, NOCs) and only to a limited degree for the EPCs and fabricators

VM VALUE MANAGEMENT **Chances** 

## The offshore O&G steel study will commence with detailed project plan – Definition of priorities for the demand and supply studies

## Ÿ

## 1. Product Market Strategy – Case Study



# Finally, the study will lead to appropriate recommendations for ArcelorMittal to approach this segment in the right way

- ÿ
- 1. Product Market Strategy Case Study

### **3** Conclusions / Recommendations

- Alignment workshop with EXAMPLECLIENT on final conclusions
- Identify and assess recommendations incl. strength, weaknesses, threats and opportunities for EXAMPLECLIENT in the O&G offshore steel segment

#### Deliverables

- Review and align on outcome of the study
- Detailed SWOT analysis of all key players, incl. EXAMPLECLIENT
- Define final conclusions and recommendations for EXAMPLECLIENT in the O&G offshore segment
- Opportunities to invest in different markets and products

#### VM Contribution

- Senior experiences and skills from comparable projects
- Input from comparable market analysis and implementation projects
- Workshops and other appropriate tools



# The market for offshore steel shows a promising CAGR from 2012 to 2017 of 9% - Main driver is the increasing demand for floaters

### 1. Product Market Strategy – Case Study

1 Case Study – Global steel demand assessment from offshore, 2012-2017 [tons, '000]<sup>1</sup>)

| 2012                         |       |       |         |      |       |       | 2017  | 2017  |         |      |       |       |       | CAGR 2012-2017 |         |      |       |       |  |  |
|------------------------------|-------|-------|---------|------|-------|-------|-------|-------|---------|------|-------|-------|-------|----------------|---------|------|-------|-------|--|--|
|                              | Plate | Pipe  | Section | Wire | Other | Total | Plate | Pipe  | Section | Wire | Other | Total | Plate | Pipe           | Section | Wire | Other | Total |  |  |
| Fixed                        | 1.011 | 978   | 240     | 18   | 63    | 2.311 | 1.270 | 1.241 | 302     | 23   | 79    | 2.915 | 5%    | 5%             | 5%      | 4%   | 5%    | 5%    |  |  |
| FPSO                         | 164   | 21    | 70      | 6    | -     | 261   | 414   | 55    | 176     | 15   | -     | 661   | 20%   | 21%            | 20%     | 21%  | -     | 20%   |  |  |
| Other floaters <sup>2)</sup> | 115   | 15    | 49      | 4    | -     | 183   | 251   | 33    | 100     | 11   | -     | 395   | 17%   | 17%            | 15%     | 21%  | -     | 17%   |  |  |
| Interm. SUM                  | 1.290 | 1.014 | 360     | 28   | 63    | 2.755 | 1.935 | 1.330 | 578     | 49   | 79    | 3.971 | 8%    | 6%             | 10%     | 12%  | 5%    | 8%    |  |  |
| SEMI-SUB                     | 21    | 3     | 6       | 1    | -     | 32    | 63    | 9     | 19      | 4    | -     | 95    | 25%   | 25%            | 25%     | 25%  | -     | 25%   |  |  |
| TLP                          | -     | -     | -       | -    | -     | -     | 76    | 6     | 19      | 1    | 36    | 138   | -     | -              | -       | -    | -     | -     |  |  |
| TOTAL                        | 1.311 | 1.017 | 366     | 29   | 63    | 2.787 | 2.075 | 1.344 | 616     | 54   | 115   | 4.204 | 10%   | 6%             | 11%     | 13%  | 13%   | 9%    |  |  |

- > The total CAGR is 9%
- > Fixed platforms account for more than 80% of the global market However, the expected market growth is mainly driven by floating platforms
- > Plates represent half of the market and grow fast with a CAGR of 10%
- Pipes and Sections are basically the other half of the market with growth rates of 6% and 11% respectively
- Floating platforms grow strongly incl. conversions, new built not addressable for EXAMPLECLIENT

1) All global regions included, Semi-Sub does not include moorings and piles. Further assumptions have been made 2) Other platform includes steel demand from platforms for which a clear type identification was not possible

- > Current product offering and sales capabilities can target standard buyers with an interest in packaging
- This results in an addressable market for EXAMPLECLIENT of ca. 1.4 M tons and resulting market share of around 7%, i.e. Europe (0.3), ME (0.3), SE-Asia (0.8)
- In the mid-term it is most interesting to target EUR / NA with innovative products and also Local Content country like Brazil who have strong demand
- > SE Asia can only be strong with low cost products



#### VALUE MANAGEMENT

## Key assumptions have been taken for the different platform types





## The amount of steel utilized in fixed platforms ranges between 1.000 and 40.000 tons – Plate major steel form used

ÿ

### 1. Product Market Strategy – Case Study

1 Case Study – Fixed platform – Steel volumes by component<sup>1)</sup> and by form<sup>2)</sup>

| Water depth [m]             | 10-50           | 51-100           | 101-180           |               |         | T     |         |       |
|-----------------------------|-----------------|------------------|-------------------|---------------|---------|-------|---------|-------|
| Total steel<br>weight [t]   | 1,000-<br>6.000 | 5,000-<br>20,000 | 10,000-<br>40,000 | —<br>Steel by | v Form  | PAN A |         |       |
| —                           |                 |                  |                   | Plate         | Pipe    | Wire  | Section | Other |
| Topside steel<br>weight [t] | 500-1,500       | 1,000-9,000      | 2,000-15,000      | 68%           | ) (10%) | 2%    | ) (15%) | 5%    |
| Jacket steel<br>weight [t]  | 400-3,500       | 3,000-8,000      | 6,000-19,000      | 5%            | ) (85%) | 0%    | ) (10%) | 0%    |
| Piles steel<br>weights [t]  | 100-1,000       | 1,000-3,000      | 2,000-6,000       | 95%           | ) (0%)  | 0%    | ) (0%)  | 5%    |

1) Assumptions: A. The weight of piles has been assumed to be 25% of the jacket weight

B. The steel share of topside has been assumed to be 60% of total topside weight and that it excludes "indirect steel"

- C. Jackets and moorings have been assumed to be 100% steel made
- D. Risers have been excluded from this analysis

2) Assumptions on steel by form: assessed average of selected market interview results with steel producers (e.g. Dillinger Hütte, Voestalpine, ArcelorMittal), distributors (e.g. ThyssenKrupp Mannex, ArcelorMittal Projects) and fabricators (e.g. Fincantieri)



**Technical leadership** 

## Smaller, more flexible European players are successfully producing for the offshore industry, while the focus of large ones is on packaging

- 1. Product Market Strategy Case Study
- Case Study Competitive assessment of selected Players 2



#### COMMENTS

- > Given the different strategies of the European steel mills, there is no "blue print" for success
- > The smaller players like Voestalpine, Dillinger Hütte are technical, innovation leaders – not so Valourec and Salzgitter
- > These smaller players are also selling through the trading activities of ThyssenKrupp, ArcelorMittal and Tata Steel who have chosen to offer a broad range of distribution and partly engineering services for offshore clients
- > EXAMPLECLIENT seem in a middle position while Far East competitors like JFE and Posco have grown strongly in this segment during last years

# **EXAMPLECLIENT**'s offshore business model a one-stop-shop packaging business with ca. 15% share of **EXAMPLECLIENT** plate, pipe and section

- 1. Product Market Strategy Case Study
  - 3 Case Study Results of internal analysis

### **Preliminary CONCLUSIONS**

- Total sales decreased by around 40% within the last year, mainly due to fewer 3<sup>rd</sup> party products - sales of own products remained stable
- > EXAMPLECLIENT plate, pipe and section are being offered in a "middle" quality range. The cost positions for plates needs to be addressed to improve competitiveness
- In the "high-end" grades competition e.g. from Germany, Japan and South Korea is ahead, while at the "low end" e.g. Chinese competitors are more competitive
- > Five biggest clients make up around 50% of sales
- > Within the last year, sales focus has changed (UK office took over clients from Middle East)

### **Preliminary RECOMMENDATIONS**

- > Clear strategy definition needed => focused packager vs. product supplier
- It seems that warehousing for certain fabricators and EPC contractors in Asia is key
- > Analysis of cost improvement potential at European plate production necessary to push own products
- Develop consensus that Cost- or Product Leadership should not be targeted. Instead, target selected customers with the packaging model.
   EXAMPLECLIENT should strengthen its position to become a leader in client intimacy.
- Development of sustainable key account management incl. definition of key accounts per client group in IOC/NOC's, EPC's and fabricators and expansion of key account team recommended

## The original target 2012 was revised in 2016 due to 10% of Budget shortfall



### 2. Revenue Enhancement – Case Study

Business Plan in EUR mn



#### Comments

- Recording to a market model and expert analysis the market grows at 3% CAGR by 2016
- In this case, EUR 17 mn additional sales in 2016 would be achieved without active measures
- The remaining approximately 83 mn EUR turnover are accessible only by active measures with systematic implementation
- As a new focus sectors in 2013 first railway technology and wind energy have been identified, other sectors should follow in 2014
- As a focus area in 2013 D was identified with gradual expansion to A, CH, Western Europe and Eastern Europe

# The sales structures of the key products and client industries show significant differences

2. Revenue Enhancement – Case Study





VALUE MANAGEMENT

## Examples of sales structures

- Big accounts exist in all client industries. Differences in purchasing, partly global through framework contracts (e.g. Automotive OEM), or local or via a central framework contract. Regional sourcing approaches exist as well.
- Direct sales and distribution channel are being used with the same clients (who comes first? Is the margin still exact?)
- High-margin niche markets can be found in every product area
- Some manufacturers organize their Steel Service Centers specifically for each industry in order to meet special requirements

# There exist different sales channels in the CI Automotive; Placement of Steel Service Centers different for each competitor

VALUE MANAGEMENT

2. Revenue Enhancement – Case Study



#### First hypothesis for CI Automotive:

- Klöckner & Co is the biggest independent steel distributor in Europe and America (not only in Cl Automotive)
- ArcelorMittal and Tata Steel have their own steel distribution (significantly smaller and industry-specific).Voestalpine and Salzgitter more active in the supplying industry
- Steel distribution ThyssenKrupp with a high percentage of foreign products in comparison to ArcelorMittal and Tata Steel
- Steel Service Centers often placed next to the production site. At ThyssenKrupp this emerged historically through the distribution, then Joint Venture with the production site, now steel distributor again. Question: OEM-supplying through the production site or steel distributors?
- Steel distributors are looking for additional value added

#### SELECTED CASE STUDIES

Value added versus non value added

# In one example 51% of non-value added time (NVA) is spent on getting missing spare parts, lack of documentation and cost control



### 3. Organizational Effectiveness – Case Study





Optimizable versus non optimizable

#### Missing or incorrect spare parts with the jobs is caused by:

- Incomplete and outdated spare parts lists
- Constant need to get spares from stock despite job preparation
- Special transports are arranged for the missing spares that are not in stock
- Need to custom build missing parts with long lead times
- Equipment documentation lacks critical information
- Seldom evaluation of stops and no improvement cycle

EXAMPLE: Resulting in fire-fighting, quests for spare parts and maintenance info, as well as prolonged stop throughput times



"We do not learn from earlier mistakes during turnaround stops. Therefore the same mistakes are made each time over and over again."

> "Sometimes contractors arrive almost 2h late. The loose control of working hours still enables writing a complete days job."



## A key success factor of a performance management project are detailed bottom-up assumptions on the benefits case

| 1 | 0   |  |
|---|-----|--|
| 4 | 000 |  |

### 3. Organizational Effectiveness – Case Study

### **Benefits Case Evaluation**

|    | Reasons                       | %   | % impactful | Focuses                                 | % Improvement | Benefits<br>in tEUR |
|----|-------------------------------|-----|-------------|-----------------------------------------|---------------|---------------------|
| 1  | Rework                        | 6 % | 95 %        | WIP, waste, etc.                        | 90 %          | 120                 |
| 2  | Communication                 | 6 % | 95 %        | Interrupts, phone calls, etc.           | 85 %          | 115                 |
| 3  | Material readiness            | 5 % | 98 %        | Waiting time, etc.                      | 95 %          | 105                 |
| 4  | Planning / inventory accuracy | 7 % | 85 %        | Changes in priorities, etc.             | 75 %          | 135                 |
| 5  | Equip readiness               | 4%  | 90 %        | WIP, other usages, etc.                 | 80 %          | 150                 |
| 6  | BR                            | 4 % | 98 %        | Not generated correctly, etc.           | 90 %          | 120                 |
| 7  | Job / people                  | 9 % | 40 %        | Call-Ins, Lack of knowledge, etc.       | 80 %          | 105                 |
| 8  | Setup / adjustments           | 2 % | 98 %        | Technical Knowledge, Breaks, etc.       | 80 %          | 150                 |
| 9  | Others                        | 4 % | 50 %        | Interrupts, Meetings, etc.              | 75 %          | 100                 |
| 10 | ,Break Downs'                 | 1 % | 60 %        | Equipment breaks, broken material, etc. | 20 %          | 55                  |
|    |                               |     | 1           | VM                                      |               |                     |

VALUE MANAGEMENT

## A Daily "War-Room" meeting often is required to ensure pace and direction of each project

|   | 0 |
|---|---|
| Ц |   |

### 3. Organizational Effectiveness – Case Study

#### **Objectives**

- Realize lead-time reduction
- Ensure realistic planning assumptions
- …
- …

#### Attendees

- Head of Project Management
- Head of Planning
- Head of Supply Chain
- Head of Operations
- …
- …

#### **Ground Rules (excerpt)**

- All issues can be addressed no hidden agendas
- Individuals are responsible for delivering their own actions
- Ask for help and escalate immediately if support is not available
- No excuses

#### Agenda

- Review Action Log
- Monitor daily project progress performance
- Identify potential bottlenecks and develop countermeasures

#### **INPUTS**

- Action Log
- Project milestone plans
- Production schedule
- Test lab schedules

#### OUTPUTS

- Updated Action Log
- Decisions and Actions
- Weekly status report to management board
- Timing:ca. 45 minutesFrequency:dailyTimexx.xx xx.xxVenue:...

VM Performance Management Tools for homepage 2015

## A Project Charter has to be create individual for each module to clarify targets, to-do's and evaluate actions

| ì  | F |   | i |  |
|----|---|---|---|--|
| ×. | 2 | 9 | 2 |  |

### 3. Organizational Effectiveness - Case Study

| objectives                                                                                                                                                                | Enablers                                                                                                                                                                               |    |    | 1  | Team Members      |                 |                 |    |    |    |    |    |    |    |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|-------------------|-----------------|-----------------|----|----|----|----|----|----|----|----|
| <ul> <li>Meet agreed targets by optimizing performance in identified bottlenecks</li> <li>Identify bottlenecks in rolling forecast and take corrective actions</li> </ul> | <ul> <li>Detailed revised Planning</li> <li>Overview of identified bottlenecks in planning</li> <li>Daily progress review and short interval steeri mechanism on bottleneck</li> </ul> | ng |    | C  | Consul<br>Caskfor | tants<br>rce [C | [VM]<br>Client] |    |    |    |    |    |    |    |    |
| Key Deliverables & Criteria                                                                                                                                               | Action Timeline (weeks)                                                                                                                                                                | 22 | 23 | 24 | 25                | 26              | 27              | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| <ul> <li>Upfront bottleneck identification through planning on</li> </ul>                                                                                                 | Define this years bottlenecks                                                                                                                                                          | X  |    |    |                   |                 |                 |    |    |    |    |    |    |    |    |
| continuous basis                                                                                                                                                          | Conduct productivity studie on constraint                                                                                                                                              |    |    | X  | X                 |                 |                 |    |    |    |    |    |    |    |    |
| Meeting agreed output target                                                                                                                                              | Agree on improvement measures                                                                                                                                                          |    |    |    |                   | X               |                 |    |    |    |    |    |    |    |    |
| <ul> <li>Reduce throughput time</li> <li>Increase working capacity on bottlenecks</li> </ul>                                                                              | Implement improvement measures                                                                                                                                                         |    |    |    |                   |                 | X               | X  | X  |    |    |    |    |    |    |
| - Increase working capacity on bottlenecks                                                                                                                                | Conduct short interval steering mechanism                                                                                                                                              |    | X  | X  |                   |                 |                 |    |    |    |    |    |    |    |    |
|                                                                                                                                                                           | Have staffing in place                                                                                                                                                                 |    |    |    |                   | X               |                 |    |    |    |    |    |    |    |    |
|                                                                                                                                                                           | Training plan new staff ready                                                                                                                                                          |    |    |    | X                 |                 |                 |    |    |    |    |    |    |    |    |
| KPIs for monitoring & evaluation                                                                                                                                          | Identified Quick Wins                                                                                                                                                                  |    |    | E  | Benefit           | s tarę          | get             |    |    |    |    |    |    |    |    |
| <ul> <li>Effectiveness</li> <li>Productivity</li> <li>Lead time (plan vs. actual)</li> <li>Capacity increase</li> </ul>                                                   | <ul> <li>Input of resources from different departments</li> <li>Reduced lead times by working in three shifts</li> <li>Committed daily/weekly progress plan on bottlenecks</li> </ul>  |    |    |    |                   | • tbd           |                 |    |    |    |    |    |    |    |    |
|                                                                                                                                                                           | VM                                                                                                                                                                                     |    |    |    |                   | _               |                 |    |    |    |    |    |    |    |    |

## For the first project weeks the activities are already planned on a daily basis



### 3. Organizational Effectiveness – Case Study





# The project management office has to ensure the implementation of agreed measures supported by implementation tools of KPI's on a regular basis



### 3. Organizational Effectiveness – Case Study



### First 100 days implementation tool











Target for the project will be agreed – During the project these are reviewed regularly on a weekly or monthly basis

3. Organizational Effectiveness – Case Study

Target Setting on a KPI



VM VALUE MANAGEMENT

## Key element of sustainable performance improvement is the measurement of KPI's on a regular basis and the use in daily management



Actu

Actu

Actu Pref.

|                                                                               | 3. Organizationa               | al Effec                 | ctivenes                           | 65 –      | Case           | Study    | y          |  |  |  |  |  |
|-------------------------------------------------------------------------------|--------------------------------|--------------------------|------------------------------------|-----------|----------------|----------|------------|--|--|--|--|--|
| Overall Project KPI's Sep - 13                                                |                                |                          |                                    |           |                |          |            |  |  |  |  |  |
| Nan                                                                           | ne                             | Value type               | 3m. rolling av                     | Actual    | Plan           | PerfTop  | Trend      |  |  |  |  |  |
| rial                                                                          | Turn                           | Ratio                    | 3,89                               | 3,72      | 4,3            | 0        | •          |  |  |  |  |  |
| al is                                                                         | better than or equal to plan   | Trend increased or equal |                                    |           |                |          |            |  |  |  |  |  |
| al is                                                                         | max. 10% less than plan        | 0                        | O ➡ Trend lies between +0% and -5% |           |                |          |            |  |  |  |  |  |
| al is more than or equal 10% less than plan 🛛 🔍 🦊 Trend decreased -5% or more |                                |                          |                                    |           |                |          |            |  |  |  |  |  |
| = Pe                                                                          | erformance (diviation to plan) |                          | Trend                              | l = (actu | al 3 m rolling | A last 3 | m. rolling |  |  |  |  |  |



#### Monthly KPI Dashboard <u>Comments</u>

- The 3 month rolling average of the material turnover decreased from a baseline ratio of 4.16 to 3.89 per September 2013.
- The reason for the decrease is driven by an increase of material needs due to the high workload in production in the last months of 2013.
- The production plan 2014 shows a rather stable monthly output and therefore we expect to show better material turnover numbers in 2014.

#### <u>Actions</u>

 Prognosis of WIP pattern going forward will be finalized in October (as part of Forecast 2013 and Budgeting 2014 process)

## The KPI-tree in the management operating system is installed by e.g. using (balanced) score cards

VALUE MANAGEMENT



3. Organizational Effectiveness - Case Study





- Key Tool for ALL managers and departments
- Operational report and MOS
  - from Level 1 (monthly) until November
  - up to Level 3 (higher frequency)
- Customer / Learning after November

# Process analysis still leads to best results for the team by using process maps and brown papers



### 4. Process Excellence – Case Study



Use 'live' documents



Involve your client in preparation

- Illustrate how information is utilized to make decisions.
- Highlight disconnects or missing system elements.
- Indicate where new systems will be implemented.
- Don't overcomplicate it!



Use 'post-it' notes to collect feedback and comments



#### SELECTED CASE STUDIES

## Key issues in the processes are to define the appropriate hid decision and to enhance the pre-calculation incl. appropriate major approval

### 4. Process Excellence – Case Study



#### **Function**

2



VALUE MANAGEMENT

## Overview of mentioned critiques by key managers visualized before on the brown paper

### 4. Process Excellence – Case Study

| Function                    |                     | "Red clouds"                            | "Red clouds"                                               |   | Comments                                        |
|-----------------------------|---------------------|-----------------------------------------|------------------------------------------------------------|---|-------------------------------------------------|
| Customer                    | in t                | he OFFER process                        | in the ORDER process                                       | - |                                                 |
| Management Board            | "Who m              | nakes the decision yes /                | "Different information systems                             | • | "red clouds" sprouted<br>critique by key people |
| Sales                       | no"                 | te dia ante altera                      | are used"                                                  |   |                                                 |
| Project Management          | "no clea            | ategic sales plan<br>ar responsibility" | no kickoff meetings"                                       | • | "Red clouds" pointed out                        |
| Engineering / Design        | "Too ma             | any people involved in                  | "Startup of a project is chaotic<br>(many open questions)" |   | to offer process                                |
| Pre-assembly                | "Time to            | o create good work is                   | "Nobody is responsible /                                   |   | «¬                                              |
| Core assembly               | often to<br>"Evervt | oo short"<br>oody has their own way of  | accountable for budget,<br>throughput"                     | • | "Red clouds" pointed out to order process       |
| Winding shop                | working             | )"                                      | "Suppliers do not deliver on time<br>in full"              |   |                                                 |
| Active part assembly        |                     |                                         | "Quality issues caused by not                              |   |                                                 |
| Final assembly              |                     |                                         | experienced staff =>bad quality                            |   |                                                 |
| Test field                  |                     |                                         |                                                            |   |                                                 |
| Transportation/Site Instal. |                     |                                         |                                                            |   |                                                 |
| Planning/Material supply    |                     |                                         |                                                            |   |                                                 |
| Finance                     |                     |                                         |                                                            |   |                                                 |



## Typical tool for identifying the key symptoms, key causes / root causes as well as potential levers and solutions

## 2

### 4. Process Excellence - Case Study



#### Comments

- Key symptoms are named by key managers
- Causes and root causes have been made transparent
- Accordingly key levers and solutions have been identified

#### • ...

• .



## Day In the Life Of (DILO)... Studies – e.g. back office clerk often reveal "real" and not "theroetical" issues

## 8

#### 4. Process Excellence – Case Study



#### **EXAMPLE**

- Only 50% of the tie is spend on sales/customer-related activities
- Putting data availability in place and reducing paperwork would potentially free up 12% or working time

### VM VALUE MANAGEMENT

## **Operational Equipment Effectiveness (OEE) is a key measure to manage productivity**

4. Proces

4. Process Excellence – Case Study

**OEE** Improvement Plan

The plant efficiency for the machine focus was increased to 78%: Increase 15.4%







# Optimizing the supply chain configuration, operating practices and portfolio rationalization show highest improvement potential



## **Business Case Framework Linking Proposed Supply Chain Changes to Financial Benefit**

### 5 Supply Chain Management – Case Study

|                                | Benefit<br>in ovation                                                    | Updated mile-stone<br>process | Introduction mobile<br>calculation tool | Elimination of lead<br>time and cost<br>inquiries | Finalized formul.<br>before project start | Introduction<br>"stabile basis order<br>start" | Introduction order<br>set | Comprehensive<br>supply chain mgr<br>responsibility | Harmonization of<br>logistics structures | Integration of<br>documentation into<br>fulfillment process | SAP / CRM direct<br>integration | Copy reference<br>structures | Consistent<br>application of<br>project review | Change process<br>after design freeze | Agree non-relevant<br>parts until kick-off | Monitor date of QC<br>availability |
|--------------------------------|--------------------------------------------------------------------------|-------------------------------|-----------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------|-----------------------------------------------------|------------------------------------------|-------------------------------------------------------------|---------------------------------|------------------------------|------------------------------------------------|---------------------------------------|--------------------------------------------|------------------------------------|
|                                | Reduced Throughput Time<br>[time]                                        | $\checkmark$                  | $\checkmark$                            | $\checkmark$                                      | $\checkmark$                              | $\checkmark$                                   | $\checkmark$              | $\checkmark$                                        | $\checkmark$                             | $\checkmark$                                                |                                 |                              | $\checkmark$                                   |                                       | $\checkmark$                               | $\checkmark$                       |
| No<br>Quantifi-                | Reduced effort through<br>improved process efficiency<br>[€]             | $\checkmark$                  | $\checkmark$                            | $\checkmark$                                      | $\checkmark$                              | $\checkmark$                                   | $\checkmark$              | $\checkmark$                                        | $\checkmark$                             |                                                             |                                 |                              | $\checkmark$                                   | $\checkmark$                          | $\checkmark$                               | $\checkmark$                       |
| cation                         | Reduced effort through fewer<br>budget slips [€]                         | $\checkmark$                  |                                         |                                                   | $\checkmark$                              | $\checkmark$                                   |                           | $\checkmark$                                        |                                          |                                                             |                                 |                              |                                                |                                       | $\checkmark$                               |                                    |
| √<br>Quan-                     | Minimized penalty payments<br>[€]                                        | $\checkmark$                  |                                         |                                                   | $\checkmark$                              | $\checkmark$                                   |                           | $\checkmark$                                        |                                          | $\checkmark$                                                |                                 | $\checkmark$                 | $\checkmark$                                   | $\checkmark$                          |                                            | $\checkmark$                       |
| tified                         | Reduced risk costs [€]                                                   | $\checkmark$                  |                                         |                                                   | $\checkmark$                              | $\checkmark$                                   |                           | $\checkmark$                                        |                                          | $\checkmark$                                                |                                 |                              | $\checkmark$                                   | $\checkmark$                          | $\checkmark$                               |                                    |
|                                | Revenue increases & profit<br>improvements [€]                           | $\checkmark$                  | $\checkmark$                            | $\checkmark$                                      |                                           |                                                | $\checkmark$              | $\checkmark$                                        | $\checkmark$                             |                                                             |                                 |                              |                                                |                                       |                                            |                                    |
| Savings<br>to be<br>quantified | Higher customer satisfaction<br>through improved delivery<br>performance |                               |                                         |                                                   |                                           |                                                |                           |                                                     |                                          |                                                             |                                 |                              |                                                |                                       |                                            |                                    |
|                                | Improved flexibility                                                     |                               |                                         |                                                   |                                           | <b>v</b> M                                     |                           |                                                     |                                          |                                                             |                                 |                              |                                                |                                       |                                            |                                    |

VM Performance Management Tools for homepage 2015

#### VALUE MANAGEMENT

## Performance targets are set using internal and external analysis

| v\$    | 5. Supply Cl             | nain Management – Ca              | se Study             |                  |                      |               |                   |                               |
|--------|--------------------------|-----------------------------------|----------------------|------------------|----------------------|---------------|-------------------|-------------------------------|
|        | Sample D                 | ata - For Reference Only          | Supp                 | ly-Chain Perform | ance Versus (        | Custom Popula | tion              |                               |
|        |                          |                                   | Major<br>Opportunity | Disadvantage     | Average<br>or Median | Advantage     | Best-<br>in Class |                               |
|        |                          | Delivery Performance to Request   |                      | 86               | %                    |               | $\neg$            |                               |
| cing   | Delivery<br>Performance/ | Fill Rate                         |                      | 84%              |                      |               |                   | 3-5% increase in revenue      |
| er-Fa  | Quality                  | Order Fulfillment Lead Time       |                      |                  | 4                    | .9            | $\rightarrow$     |                               |
| tome   |                          | Perfect Order Fulfillment         |                      |                  | 83%                  |               | $\sim$            |                               |
| Cus    | Flexibility and          | Upside Flexibility (20% Increase) |                      |                  |                      | 20            |                   | Increase in Customer          |
|        | Responsiveness           | Supply-Chain Response Time        |                      |                  | 10                   | 1-☆           |                   | Satisfaction                  |
| 5      | Cont                     | Supply-Chain Management Cost      | 14.1%                |                  | +                    |               |                   | -\$54M/year                   |
| acinç  | COST                     | Value Added per Employee          |                      |                  |                      |               |                   | N/A                           |
| al-F   | -                        | Total Inventory Days of Supply    | 110                  |                  |                      |               | -                 | -\$16M one-time               |
| Interr | Assets                   | Cash-to-Cash Cycle Time           | 162                  |                  |                      |               |                   | -\$6M/year<br>-\$64M one-time |
|        |                          | Net Asset Turns                   |                      |                  |                      |               | 4.9               | N/A                           |
|        |                          |                                   | Total of Pote        | ntial Annualised | d Costs Savir        | ngs (US\$)    |                   | \$60M                         |
|        |                          |                                   | Total of Pote        | ntial One-Time   | Cash Saving          | s (US\$)      |                   | \$80M                         |
|        |                          |                                   |                      | <b>V</b> M       |                      |               |                   |                               |



## CREATIVITY

## DOING

## RESULTS

